Vicki ReedVicki Reed: The Nest, 2015; from ‘What We Leave Behind,’ a series of lifesize cyanotype portraits on fabric that Reed made of her parents, in their late eighties and suffering from memory loss and dementia, before their move to a nursing home

In screening for genetic mutations that can cause disease, the line between useful and damaging knowledge is hard to draw. We can in many instances find out who will fall victim to conditions for which no treatment exists. Huntington’s chorea is caused by a single mutation that can easily be identified. So is cystic fibrosis. Everyone who has the mutation will develop the disease unless he or she dies of something else first. No one who does not have the mutation will develop the disease. But though the etiology and development of both these afflictions are well understood, there is no way to prevent either of them.1 Hereditary prion diseases—genetic neural conditions caused by misfolded proteins—are rarer, but likewise play out with grim reliability. No treatment can slow the inexorable progress toward an agonizing death.

Bioethicists disagree on whether diagnoses of such diseases should be postponed until symptoms develop or should be made much earlier, even in infancy. More and more, clinicians argue that diagnosis before the onset of symptoms can benefit patients. It can circumvent an exhausting investigative odyssey; it can inform reproductive decisions; it can help a patient to plan; it can allow him or her to connect with others with the same condition, which is not only reassuring for the patient but also helpful to research scientists. But it can also cause despair. To what extent is information about an unpreventable genetic disease that has not yet caused any symptoms a gift and to what extent is it a burden?

This double-edged sword of genetic testing hangs over Gina Kolata’s Mercies in Disguise. Kolata, a well-known reporter on science and medicine for The New York Times, is a gifted storyteller. Her account of the Baxleys of South Carolina, a family with Gerstmann-Sträussler-Scheinker disease (2 In Mercies in Disguise she shows sympathy for Holly’s religiosity, writing admiringly:

From the start, Holly had been a light in both her parents’ lives. She was tall and beautiful and could always be counted on to stay out of trouble. She was an exemplary student, too…. In her early twenties, already married for three years to a man she had met in college, Holly had developed what she describes as “a closer relationship with Christ.” …When [her brother] Buddy got that letter [containing his genetic diagnosis], she and her husband already had one child, a baby boy. His life, she trusted, was in God’s hands. She was not going to worry about whether she or her baby had inherited her father’s illness.

Elsewhere, Kolata’s value judgments come through clearly. She explains in relation to 3

The number of illnesses such as 4

When the risk conferred by a gene is lower and the preventative measures for the potential condition are more drastic, deciding whether or not to take advantage of them is more difficult. More than fifty hereditary cancer syndromes have been identified. Mutations of the tumor-suppressing genes 5 Along with Amanda Baxley’s right to know goes Holly Baxley’s right not to know.

A screening shortly after birth for sickle cell disease, which can be treated, is mandatory in all US states so that affected children can get care. For most other genetic defects, the choice to know rests squarely with the person at risk or, for juveniles, with their parents. 23andMe has a databank of information about a broad range of people—more than a million at this writing—and has made some of it available to researchers working on the demographics of particular diseases. Many Americans have expressed concern that any medical test may enter the public record, and worry that people with certain genetic liabilities would suffer from bias in matters of employment and insurance. Cases alleging such discrimination have already come before the courts, including an ongoing suit brought against the Palo Alto school district by the parents of a boy who, they allege, was removed from his class because a test showed that he had genetic markers associated with cystic fibrosis.

There are instances in which someone has been tested but does not wish to tell family members, some of whom cannot be trusted to maintain confidentiality, about troubling results. Any such circumstance provokes a moral conundrum for a doctor. K.G. Fulda and Kristine Lykens have argued in the Journal of Medical Ethics that “the physician’s decision not to inform family members simply removes any possibility of delaying or ameliorating the onset of symptoms. Consequently, the public policy function of public health may need to resolve these countervailing interests of individuals.” One court has held that a doctor must take “reasonable steps…to assure that the information reaches those likely to be affected or is made available for their benefit.”

In 1983, the President’s Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research recommended that disclosure be required when efforts to elicit voluntary disclosure have failed; when there is a high probability of harm, which intervention might avert; and when prospective harm is serious. The commission confirmed that this information should be shared even without the primary patient’s consent if not disclosing the information could lead to harm. Some ethicists advise that physicians should notify patients prior to genetic testing about their own stance on information-sharing—what one writer has called a “genetic Miranda warning.”

Genetic information is pertinent to the person whose genome is being examined but also, as the Baxley story clearly illustrates, to his or her offspring, and the interests of parent and child may not coincide. Soon, scientists will be able to scan a full fetal genome with a simple maternal finger-prick test. This process, an early version of which is already used to diagnose trisomy-21 (the mutation that leads to Down syndrome), will yield a huge amount of information. Prospective parents may feel pressure to abort on the basis of information that reveals their child will be born with a disease that is expensive to manage. Pennsylvania passed Chloe’s Law in 2014, requiring health care providers to give information about treatment and support services to women who receive a prenatal diagnosis of trisomy-21, and several other states have passed similar measures.

These decisions about selective termination are extremely variable; a risk that does not trouble one person may terrify another. Is there any argument for terminating a pregnancy once a BRCA marker is found? What about doing PGD to weed out fetuses that carry a mutated BRCA gene? Some people have made these choices, but the shadow of eugenics always looms over them. Kolata asks what a couple should do if one of them carries a gene that creates a 50 percent chance of a midlife heart attack. What, too, would we do if we were to find gene combinations that increase the likelihood of autism, homosexuality, or deafness? Would we aspire to screen for traits as significant as intelligence or gender, as trivial as hair color, as socially loaded as complexion, as socially stigmatized as obesity? What about selecting for genes that appear to be linked to athletic prowess (which have been extensively but futilely sought)?

We might undertake PGD to cull embryos, for example, with a 50 percent risk for a condition likely to shorten life by more than ten years, or a 75 percent risk for a condition that would cause a lifetime of physical pain. Any attempt to standardize these choices would feel random, a decision about a life we cannot fully imagine. As for-profit companies do scans for a widening range of characteristics for those seeking preimplantation genetic diagnosis, such prenatal knowledge may become something of a luxury commodity. Kolata’s book raises crucial questions about knowledge that can be both vital and fatal, both palliative and dangerous.

  1. 1

    See Heidi Chial, “Huntington’s Disease: The Discovery of the Huntingtin Gene,” Nature Education Vol. 1, No. 1 (2008); and William Guggino and Bruce Stanton, “Mechanisms of Disease: New Insights into Cystic Fibrosis: Molecular Switches That Regulate ↩

  2. 2

    Kolata’s health reporting for The New York Times is criticized in David Handelman, “Act Up in Anger,” Rolling Stone, March 8, 1990; Mark Dowie, “What’s Wrong with the New York Times’s Science Reporting?,” The Nation, July 6, 1998; Michael Shapiro, “Pushing the ‘Cure’: Where a Big Cancer Story Went Wrong,” Columbia Journalism Review, July/August 1998; Paul Scott, “Diet Wars Turn Family Feud,” Columbia Journalism Review, July 31, 2012; and David Bollier, “Did Commercial Journals Use the ↩

  3. 3

    See, for example, Tikvah Alper et al., “Does the Agent of Scrapie Replicate Without Nucleic Acid?,” Nature, Vol. 214 (May 20, 1967); and John S. Griffith, “Nature of the Scrapie Agent: Self-replication and Scrapie,” Nature, Vol. 215 (September 2, 1967). ↩

  4. 4

    See Gareth J. Hollands et al., “The Impact of Communicating Genetic Risks of Disease on Risk-Reducing Health Behaviour: Systematic Review with Meta-analysis,” The BMJ, Vol. 352 (March 15, 2016). ↩

  5. 5

    For comparison of the utilitarian and libertarian perspectives on genetic testing, see K.G. Fulda and K. Lykens, “Ethical Issues in Predictive Genetic Testing: A Public Health Perspective,” Journal of Medical Ethics, Vol. 32, No. 3 (March 2006). ↩